4 research outputs found

    Slip and Fall Risks: Pre-Slip Gait Contributions and Post-Slip Response Effects

    Get PDF
    This thesis describes analysis methods and results from slip-perturbed gait experiments. The risk for falls was related both to the conditions present at heel strike and to the nature of the response. Gait analysis was performed using the Human Movement and Balance Laboratory (HMBL) model, a fifteen segment, fourteen joint model of the human body that was developed as part of this thesis effort. Resulting kinematics and kinetics included three-dimensional angles describing relative segment rotations, segmental and whole-body centers-of-mass, and joint actuation torques for the entire body.The relationship between pre-slip gait characteristics and the magnitude of slips was explored for both younger and older adults. Slip severity, either hazardous or non-hazardous, was determined using a 1.0 m/s peak slip velocity threshold. Hazardous slips were associated with greater step lengths normalized by leg length, larger and more rapidly changing foot-floor angles at heel strike, and increased cadence across the two subject groups. These results suggest that gait characteristics play an important role in the severity of slips. Older adults were found to walk with shorter step lengths and with smaller and more slowly changing foot-floor angles at heel strike compared to younger subjects, suggesting that age effects also impact slip severity.The effects of slipping and trailing leg response on slip outcome (falls or recoveries) were explored. Slip severity was found to be the most significant parameter related to outcome. Response strategies were classified, based on trailing leg dynamics, as either minimal, foot-flat, mid-flight, or toe-down. Slipping and trailing leg hip and knee torques were determined using the HMBL model and timing and magnitude parameters from these torques were then identified. Relationships between these parameters, age group (younger/older), response strategy, and outcome were then explored. Age was not found to be significantly related to response strategy or outcome, nor was response strategy found to be related to outcome. Slipping leg knee torque timing and magnitude parameters were related to slip severity and to outcome for hazardous slips. These results suggest that slip responses, coupled with slip severity, determine fall or recovery outcomes

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    ACCF 2012 Health Policy Statement on Patient-Centered Care in Cardiovascular Medicine

    No full text

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    No full text
    corecore